Catalytic, Enantioselective, Intramolecular Carbosulfenylation of Olefins. Mechanistic Aspects: A Remarkable Case of Negative Catalysis

نویسندگان

  • Scott E. Denmark
  • Hyung Min Chi
چکیده

In the course of developing an enantioselective, Lewis base/Brønsted acid co-catalyzed carbosulfenylation of alkenes, a seemingly impossible conundrum arose: How could a catalyst inhibit a stoichiometric reaction? Despite the observation of very good enantioselectivities, the rate of the uncatalyzed reaction (i.e., no Lewis base) was found to be comparable to or slightly faster than that of the catalyzed process. A combination of detailed kinetic and spectroscopic studies revealed that the answer is not the direct involvement of the Lewis base catalyst, but rather the secondary consequences of its conversion to the catalytically active sulfenylating agent. Generation of the chiral sulfenylating species is accompanied by the formation of equimolar amounts of sulfonate ion and phthalimide which serve to buffer the remaining Brønsted acid and thus inhibit the racemic background reaction. Thus, the actual background reaction operative under catalytic conditions is not well mimicked by simply removing the catalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enantioselective α-alkenylation of aldehydes with boronic acids via the synergistic combination of copper(II) and amine catalysis.

The enantioselective α-alkenylation of aldehydes has been accomplished using boronic acids via the synergistic combination of copper and chiral amine catalysis. The merger of two highly utilized and robust catalytic systems has allowed for the development of a mild and operationally trivial protocol for the direct formation of α-formyl olefins employing common building blocks for organic synthe...

متن کامل

Direct, enantioselective α-alkylation of aldehydes using simple olefins.

Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic m...

متن کامل

Enantioselective intramolecular aldehyde α-alkylation with simple olefins: direct access to homo-ene products.

A highly selective method for the synthesis of asymmetrically substituted carbocycles and heterocycles from unactivated aldehyde-olefin precursors has been achieved via enantioselective SOMO-catalysis. Addition of a catalytically generated enamine radical cation across a pendent olefin serves to establish a general asymmetric strategy toward the production of a wide range of formyl-substituted ...

متن کامل

Enantioselective synthesis of highly substituted furans by a copper(II)-catalyzed cycloisomerization-indole addition reaction.

A catalytic enantioselective reaction based on a copper(II) catalyst strictly containing chiral anionic ligands is described. In the present work, copper(II)-phosphate catalyst promotes the intramolecular heterocyclization of 2-(1-alkynyl)-2-alkene-1-ones and facilitates high levels of enantioselectivity in the subsequent nucleophile attack. Mechanistic studies suggest that formation of a coppe...

متن کامل

Lewis Base Catalyzed, Enantioselective, Intramolecular Sulfenoamination of Olefins

A method for the enantioselective, intramolecular sulfenoamination of various olefins has been developed using a chiral BINAM-based selenophosphoramide, Lewis base catalyst. Terminal and trans disubstituted alkenes afforded pyrrolidines, piperidines, and azepanes in high yields and high enantiomeric ratios via enantioselective formation and subsequent stereospecific capture of the thiiranium in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2014